Jump to content Jump to navigation menu

D(+)-Saccharose, 1 kg, plastic

≥99,5 %, Ph.Eur.
Related products
Pack Qty.
Pack.
D-Sucrose
Empirical formula C12H22O11
Molar mass (M) 342,30 g/mol
Melting point (mp) 170 °C
WGK 1
CAS No. [57-50-1]
EG-Nr. 200-334-9

For density gradient centrifugation; for biochemical applications.

Low-cost alternative according to the specifications given in the European Pharmacopeia.
Product details
Guarantee analysis

€20.35/Pack Qty. 

excl. VAT. | 1 kg per Pack Qty.

Art. No. 4661.1

In stock
Delivery fast, simple and reliable!
from 6 Pack Qty. €19.33/Pack Qty.
from 24 Pack Qty. €18.32/Pack Qty.
Carl Roth subscription service

Now recurring orders conveniently delivered as a subscription!

With the new Carl Roth Replenishment Service you can let products be ordered automatically which you need regularly in your lab!

How it works:
1

Put all products for your subscription in the desired quantity in the basket.

2

In the shopping cart, select the option "Order shopping cart as subscription" Order as subscription.

3

Set Starty point and interval for your subscription and submit order!

By the way: Through your account you can customize or delete your subscriptions anytime.

Any questions about this product?

Do you have a question about this product?

In the general information or Product details, we have compiled extensive descriptions and downloads for each product.
If you can not find an answer to your question in the Certificates of Analysis and Application Examples , feel free to contact us!
Contact Service

Product details



D(+)-Saccharose ≥99,5 %, Ph.Eur.

Low-cost alternative according to the specifications given in the European Pharmacopeia.



Technical Information
Checked according to pharmacopoeia Ph.Eur.  
D(+)-Saccharose
Selected quantity:   0
  1. Subtotal:  0.00
Order No. Pack Qty. Pack. Price Quantity
4661.1 1 kg plastic €20.35
4661.2 5 kg plastic €83.35
4661.3 50 kg cardboard €330.60
4661.4 10 kg plastic €105.90
In stock
Available at short notice
Not available
Delivery date currently unknown
Selected quantity:   0
  1. Subtotal:  0.00

Downloads


General information

Analysis of Food

Carl ROTH also offers reagents suitable for food analysis.

On the following pages, you will find the determination of
• Nitrogen according to Kjeldahl
• Sugar
• Mercury
• Trichinae
• Fat

and the determination of the
• Iodine value
• Acid value
• Peroxide value
• Saponification value

as well as other determining factors such as
• Viscosity
• Density
• Hydroxyl value
• Fluoride ions


Determination of Nitrogen according to Kjeldahl

The most common technique for measuring the amount of nitrogen in organic matter is the Kjeldahl method, which is used in a wide range of sectors such as environmental analysis, food analysis, water analysis and agricultural analysis, as well as in the pharmaceutical and chemical industries. In this traditional method, a precisely weighed sample is broken down using concentrated sulphuric acid, a process which digests its organic contents and reacts nitrogen to form ammonium sulphate.(CHNO)(s) → CO2 (g) + SO2 (g) + H2O (g) + NH4SO4 (solv, H2SO4)A catalyst or catalyst mixture consisting of copper, selenium, mercury and/or titanium is added to speed up the reaction. Sodium or potassium sulphate is used to give the sulphuric acid a higher boiling point. If the nitrogen is contained in a nitro, nitroso or azo compound, however, the mixture must be reduced with zinc before digestion takes place.
The nitrogen is now present in the sulphuric acid as ammonium sulphate. Adding a strong base (such as NaOH) neutralises the sulphuric acid and liberates ammonia from the solution.NH4SO4 (solv) + 2 NaOH (aq) → Na2SO4 (aq) + 2 NH3 (g) + 2 H2O (l) The ammonia is led into an acid (such as boric acid) by means of steam distillation.B(OH)3 (aq) + 2 H2O (l) + NH3 (g) → B(OH)4- (aq) + NH4+ (aq) The resulting strong base (borate ion) is back-titrated with a strong acid (hydrochloric acid or sulphuric acid). The excess weak boric acid is not captured in the process. A Tashiro's indicator that changes colour in the acid is used for titration. The amount of acid that has been used up can then be converted into the amount of nitrogen in the sample. NH4+ (aq) + B(OH)4- (aq) + HCl (l) → NH4Cl (aq) + B(OH)3 (aq) + H2O (l)To calculate the protein content of the sample, the varying nitrogen content of the amino acids must be checked and the relevant conversion factors applied. The nitrogen contained in food derives mainly from proteins, but different samples may also contain other sources of nitrogen.


Sugar (Carbohydrates)

Carbohydrates or Saccharides make up 50 % of the dry biomass of the earth and are therefore the most frequent class of biomolecules. Besides at least two hydroxy groups, they also have an aldehyde or a ketone group and can be subdivided according to the number of monomeric components in mono‑, di‑, oligo and polysaccharides.

Whereas mono‑, di‑ and oligosaccharides are soluble in water, taste sweet and are therefore called as sugar, polysaccharides are hardly, or not at all, soluble in water and have a neutral taste.

Carbohydrates, together with fats and proteins make up a large percentage of nutrition. In addition to their central role as an energy source, they are also an important structural component especially in plants (e.g. Cellulose). Ribose, a monosaccaride with five carbons (C5H10O5) is an essential element of coenzymes (such as ATP, FAD and NAD) and a structural component of RNA. Desoxyribose (a ribose derivative) is a structural component of DNA.


Disaccharides

Disaccharides consist of two monosaccharide units. These are interlinked covalently via a glycocide bond. The most familiar representatives are saccharose, lactose and maltose.


Certificates of Analysis

You can search for and download your certificate of analysis for the selected product here. Please provide your batch number.
The following analysis certificates have been found:

Guarantee analysis

Appearance of solutioncomplies  
Identitycomplies  
Conductivity≤35 μS/cm  
Colour≤45  
Reducing sugarcomplies  
Specific rotation [α]a+66.3° to +67.0°  
Loss on drying (105 °C)≤0,1 %  
Sulfite (as SO2)complies  

0 Reviews

0.0 out of five stars